A Probabilistic Approach to Generalized Zeckendorf Decompositions

نویسندگان

  • Iddo Ben-Ari
  • Steven J. Miller
چکیده

Generalized Zeckendorf decompositions are expansions of integers as sums of elements of solutions to recurrence relations. The simplest cases are base-b expansions, and the standard Zeckendorf decomposition uses the Fibonacci sequence. The expansions are finite sequences of nonnegative integer coefficients (satisfying certain technical conditions to guarantee uniqueness of the decomposition) and which can be viewed as analogs of sequences of variable-length words made from some fixed alphabet. In this paper we present a new approach and construction for uniform measures on expansions, identifying them as the distribution of a Markov chain conditioned not to hit a set. This gives a unified approach that allows us to easily recover results on the expansions from analogous results for Markov chains, and in this paper we focus on laws of large numbers, central limit theorems for sums of digits, and statements on gaps (zeros) in expansions. We expect the approach to prove useful in other similar contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Behavior in Generalized Zeckendorf Decompositions

A beautiful theorem of Zeckendorf states that every integer can be written uniquely as a sum of non-consecutive Fibonacci numbers {Fn}n=1; Lekkerkerker proved that the average number of summands for integers in [Fn,Fn+1) is n/(φ2 + 1), with φ the golden mean. This has been generalized to certain classes of linear recurrence relations, where using techniques from number theory and ergodic theory...

متن کامل

The distribution of gaps between summands in generalized Zeckendorf decompositions

Zeckendorf proved any integer can be decomposed uniquely as a sum of non-adjacent Fibonacci numbers, Fn. Using continued fractions, Lekkerkerker proved the average number of summands of an m ∈ [Fn, Fn+1) is essentially n/(φ + 1), with φ the golden ratio. This result has been generalized by many, often using Markov processes, to show that for any positive linear recurrence the number of summands...

متن کامل

Generalizations of the Dual Zeckendorf Integer Representation Theorems—discovery by Fibonacci Trees and Word Patterns

In this paper we show how the two well-known integer representation theorems which are associated with the name of Zeckendorf may be generalized as dual systems by constructing colored tree sequences whose shade sets partition Z = {1, 2, . . . } . Many interesting properties of the representations can be observed directly from the tree diagrams, and the proofs of the properties can truly be sai...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

A Generalization of Wythoff's Game

Wythoff s game is a variation of Nim, a two-pile game in which each player removes counters in turn until the winner takes the last counter. The safe-pairs generated in the solution of Wythoff's game have many properties interesting in themselves, and are related to the canonical Zeckendorf representation of an integer using Fibonacci numbers. In Nim, the strategy is related to expressing the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2016